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Community-Aware Charging Station Network Design for 
Electrified Vehicles in Urban Areas: 

 

Reducing Congestion, Emissions, Improving Accessibility, and Promoting 

Walking, Bicycling, and use of Public Transportation 
 
 
 
 
 

EXECUTIVE SUMMARY 

 

We developed a set of tools to support effective planning of network design for charging stations 

for EVs in urban areas. Such infrastructure deployment also presents a number of unique 

opportunities for promoting livability while helping to reduce the negative side-effects of 

transportation (e.g., congestion and emissions). 
 
Mile-stone #1: Developed methods for efficient estimation of various factors important for 

network design and understand the uncertainties associated with these factors. Real time data from 

various publicly available resources are considered for the estimation of the factors. 
 
Mile-stone #2: Given the factors contributing to livability aspects and robust network design for 

electrified vehicles, formulated a two-stage stochastic programming model to for the network 

design of EVs for a community. 
 
Mile-stone #3: Applied the developed stochastic model and performed computational experiments, 

and analyzed the usefulness of the model in terms of improvements in livability factors and 

accessibility of the given network. 
 
The goal of the project is to provide series of tools for the city and governmental planning agencies 

to evaluate the factors important for network design of EVs and improve livability aspects for the 

communities. Shared the findings with SEMCOG and planning to pilot the methods in 

collaboration with a SE-MI city under a project extension. 
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Abstract 

 

Advantages of electric vehicles (EVs) include diversification of the transportation energy 

feedstock, reduction of greenhouse gas and other emissions, energy security, fuel economy, 

reduced operating costs, and reduced emissions leading to lesser air pollution levels. As a part of 

government’s encouragement on vehicle electrification objectives, the major automobile 

companies of the world are being challenged to produce affordable EVs by governments and 

environmentally conscious consumers. Several companies have accepted the challenge, and more 

models of EVs (hybrid vehicles, plug-in hybrid vehicles, pure battery EVs) are being introduced 

every year around the world. A major challenge for achieving large-scale adoption of EVs is an 

accessible infrastructure for the communities. The societal benefits of large-scale adoption of EVs 

cannot be realized without adequate deployment of publicly accessible charging stations due to 

mutual dependence of EV sales and public infrastructure deployment. Such infrastructure 

deployment also presents a number of unique opportunities for promoting livability while helping 

to reduce the negative side-effects of transportation (e.g., congestion, emissions, and noise 

pollution). In this phase, we develop a modeling framework (MF) to consider various factors and 

their associated uncertainties for an optimal network design for electrified vehicles. The factors 

considered in the study include: state of charge – the available charge in batteries of EVs at a given 

point of time, dwell time – drivers’ willingness on length of time to park their vehicles in a given 

parking location (for potential charging), Origin-Destination (OD) Pair – EV demand for a given 

origin-destination within a community and the change in pattern during a week, preferences - 

drivers’ preferences regarding their willingness to use publically available charging stations 

besides charging at home. Apart from these factors, we also consider the uncertainties in EV 

market penetration in the future and driver’s willingness to walk (some distance) from charging 

station to destination. We present a case study and computation experiments to quantity the 

usefulness of the proposed two-stage stochastic mathematical model for network design, and 

provide insights in terms of improvements in livability aspects like reduction of traffic and 

emission, and increment of public health benefits. The proposed research relates and contributes 

to the attainment of strategic goals of the U.S. Department of Transportation and the U.S. 

Department of Energy. It contributes to the fostering of livable communities by increasing the 

access to transportation with EVs, improves adoption of EVs, and provides increased 

transportation choice. It further contributes to environmental sustainability through reduced 

carbon footprint of transport. Lastly, it contributes to the economic competitiveness through 

increased transportation productivity and more efficient utilization of existing system resources. 
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Introduction 
 
Sustainability and livability are concepts that are of great interest to policy makers and city 

planners. According to Victoria Transport Policy Institute, sustainability promotes a balance 

among economic, social and environmental goals of community, and livability refers to the subset 

of sustainability goals such as air and noise pollution prevention, human health, and community 

development that are directly related to the life of people in the community. Indeed, walkability 

is a livability objective that can promote quality of life within a community. However, promoting 

a walkable lifestyle needs a safe and enjoyable environment as well as the pedestrian 

infrastructure. 

 

On the other hand, according to the Environmental Protection Agency, 50% to 90% of air pollution 

in urban areas comes from automobile emissions. The challenges of rising fuel cost and climate 

change along with the clean fuel of EVs are great incentivizing factors for adopting these vehicles 

which will bring air quality, traffic congestion reduction, public health enhancement and global 

warming benefits to the community. According to Berger et al. (2015), an EV that draws its power 

from U.S. electrical grid emits at least 30% less CO2 than comparable gasoline or diesel-fueled 

vehicles. 
 
Encouraging people to walk and bike is one way to improve public health condition (Guell et al. 

2013). Walking and cycling also reduce traffic congestion and air/noise pollution. Health benefits 

of walking include reducing the risk of heart pressure, reducing blood pressure, managing weight 

and improving fitness. The Centers for Disease Control and Prevention (CDC) reports that more 

American people are putting their lives at risk by becoming sedentary and obese. The mean 

walking-trip length and duration in the U.S. is estimated to be 0.62 miles and 16 minutes in 2001, 

and 0.61 miles and 12 minutes in 2009 (Yang et al. 2013). In 2009, 27% of all trips were shorter 

than 1 mile in the U.S., but only 36% of those trips were made by walking or cycling (Beuhler et 

al. 2011). The 2012 American Community Survey data reveals that the rate of walking to work in 

the U.S. has decreased from 5.6% in 1980 to 2.8% between 2008 and 2012. However, there is a 

great difference between the U.S. and other Western countries in non-motorized travel. For 

example, 25% of daily trips are made by bicycle and 22% are made by walking in the Netherlands 

(Kuzmyak et al. 2012). According to the National Personal Transportation Survey, percentage of 

all urban trips that have been done by walking or biking decreased from 10% in 1977 to 6.3% in 

1995, whereas, people in Netherlands walked or biked 7 times more than people in the U.S. in 

1995 (Pucher et al., 2003). CDC has recently developed the Active Community Environments 

(ACE) programs to encourage people to walk and bike more through urban design and 
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transportation policies (Centers for Disease Prevention and Control, 2002). 
 

The societal benefits of large-scale adoption of EVs cannot be realized without adequate 

deployment of publicly accessible charging stations due to mutual dependence of EV sales and 

public infrastructure deployment. Such infrastructure deployment also presents a number of 

unique opportunities for promoting livability while helping to reduce the negative side-effects of 

transportation (e.g., congestion and emissions). Access to charging infrastructure is also among 

the most important factors that can increase market penetration of EVs. To build such an 

infrastructure, city planners and policy makers need to know the number of charging stations that 

are required, the optimal locations that they should be installed, and recharging capacity at each 

station (Miralinaghi, 2012). An effective design of charging network will influence travel behavior 

of drivers and can also encourage them to walk to their final destinations. 
 
Public charging refers to any charging location that is away from home and can be located in both 

public parking structures and gas stations. Public charging stations are more important to drivers 

that have not installed one in their home (Dong and Lin, 2012). Besides locating charging stations, 

capacity is an issue that must be taken into account since low capacity will increase waiting time 

of drivers to charge their vehicles or even discourage them to use public charging stations. In 

addition, driving behavior and charging pattern of EVs are among critical factors that can affect 

economic and environmental benefits of EV adoption. A study by University of Michigan 

estimates that a plug-in hybrid EV will emit 252 to 262g CO2 per mile driven in 2030 depending 

on the allocation method using baseline grids and charging methods, which means that EV 

adoption will not be helpful in GHG-reduction in short term but it will definitely reduce emissions 

in the long-run (Hofmeister, 2014). 

 
Since drivers are used to refueling their vehicles at gas stations, installing charging stations at gas 

stations will fit into their refueling behavior. It will also help maintaining public infrastructure 

utilization. On the other hand, since drivers won't be able to spend long time in gas stations, fast 

charging stations have to be considered for these places whereas people usually tend to park their 

vehicles for long hours in parking lots, which make lower-rate charging stations more feasible for 

parking places. However, a high parking fee may reduce the chance of using charging stations in 

parking lots (Cai et al., 2014). According to the International Parking Institute (IPI), the desire for 

more livable and walkable community has become the most important societal change that is 

influencing parking industry (International Parking Institute, 2015). 
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Figure 1: Overall modeling framework for improving community livability indices and adoption of EVs  

and charging stations. 

Overall Modeling Framework 
 
The aim of Phase 1 of the project is to develop methods, and eventually decision support tools, to 

aid planning agencies in promoting livability within communities through careful design of 

charging station networks for electrified vehicles (EVs). We have developed a stochastic 

mathematical optimization model to perform network design for EV charging stations while 

considering various aspects of livability for a community. The major components used for the 

stochastic model include: 1) OD traffic volume within a community, and the destination 

information includes parking location, and final destination (office, shopping, restaurant, hospital, 

etc.) of the drivers, 2) walking behavior of the drivers based on the demographics of a community 

and final destination of the drivers, 3) arrival pattern of EVs to parking locations, state of charge 

(SOC) and estimated dwell time, and 4) impact on congestion, pollution, charging rates and other 

livability indices. 

 

The project uses data from National Household Travel Survey (NHTS), and extant studies about 

general walking behaviors/preferences of people. Based on the inputs from major components and 

user specified parameters from an analyst in a planning agency, the stochastic mathematical model 
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with an objective to maximize the livability indices and adoption of EVs proposes an optimal 

network for charging stations. Furthermore, pricing schemes are utilized to estimate the return on 

investments from the proposed network design in a post-optimization analysis. 

 

Current Work 

In the current Phase 1 part of this research, we want to develop models and methods to design an 

integrated framework for designing EV charging station network for a given region/community 

by determining number, location, and size of stations while explicitly accounting for the impact 

on traffic flows (reduced congestion), increased livability metrics (reduced noise, greenhouse 

emission, increased walkability), user choices (given, e.g., the range anxiety, trip distributions), 

as well as preferences of the charging station operators (cost of location, electricity, utilization 

and revenues). 
 
Our model contributes to the fostering of livable communities by increasing the access to 

transportation with EVs, improves adoption of EVs, and provides increased transportation choice. 

It further contributes to environmental sustainability through reduced carbon footprint of 

transport. Lastly, it contributes to the economic competitiveness through increased transportation 

productivity and more efficient utilization of existing system resources. In addition, through the 

aim of reducing drivers walking commute to stations as well as their cost for charging, enables 

communities to be more livable for both the owners of EVs as well as general public by improving 

mobility, accessibility, and reducing congestion. 

 

Literature Review 
 
During the last decade, many researchers have focused on optimally locating alternative-fuel-

vehicle's refueling stations. Some authors have studied the charging behavior of EV drivers. Lam 

et al. (2006) studied joint behavior of travel and parking of drivers through a time-dependent 

network equilibrium model. Their results showed that travel demand, walking distance, parking 

capacity and parking fee are the most important factors in determining parking behavior. Using 

driving pattern data in NHTS, Kelly et al. (2012) simulated PHEV charging and gasoline 

consumption. They analyzed the effects of charging location, charging rate, time of charging and 

battery size to measure the impact that PHEV adoption can have on energy consumption and 

emission reduction. Dong et al. (2012) examined the impact of public charging infrastructure on 

gasoline consumption of plug-in hybrid EVs. Their analysis showed that public charging 

infrastructure benefits PHEVs with small batteries the most and reduces energy consumption of 

PHEVs by 30% compared to charging stations installed at homes. Using battery EV charging data 



 Community-Aware Charging Station Network Design for Electrified Vehicles 

 

 11 
 

in Japan, Sun et al. (2015) applied a mixed logit model to analyze the charging behavior of private 

and commercial battery EV drivers in terms of starting time of recharging. They found that state 

of charge, remaining time to the next travel and the distance that has to be driven in the next travel 

are the most important factors in deciding to charge the vehicle or not after the last trip of the day. 

Azadfar et al. (2015) studied the economic, environmental and technical factors that may affect 

charging behavior of EV drivers and in turn the electricity load on the grid. They found that 

charging infrastructure and battery performance are the most important factors in charging pattern 

of EV drivers. 

 

Public health and transportation researchers tend to analyze walking and bicycling preference of 

people. Using travel survey data for the Minneapolis and St. Paul region of Minnesota, Iacono et 

al. (2008) estimated distance decay function for different travel modes, auto and non-auto modes, 

and several destination types in order to develop accessibility measures. While many studies have 

suggested 400 meters as the threshold for walking preference, their results showed that many 

pedestrians travel more than this threshold. Guell et al. (2013) investigated factors that affect 

walking and cycling to and from work in environments that are not supportive for these activities. 

Their analysis showed that one of the reasons that commuters decide to walk or bike to and from 

work in an unsupportive route is the availability of parking at work. Panter et al. (2013) examined 

the individual, workplace and environmental factors that could increase the share of walking and 

biking activities in travelling to and from work. They found that people who do not have access 

to parking at work and who have the most supportive environment are more likely willing to walk 

and bike. They suggested that providing limited or non-free parking at work and provide free off-

site parking may encourage people to walk and bike more. Waerden et al. (2015) studied the 

relationship between car drivers' willingness to walk from parking lots to their final destinations 

and four trip purposes (work, social, weekly activity and non-weekly activity) using multi-nominal 

regression analysis. Analysis of responses of more than 300 members of the Eindhoven University 

of Technology's University Parking Panel showed that frequency of car use and parking duration 

are the most important factors determining willingness to walk. 
 
Many researchers have concentrated on developing optimal charging infrastructure for EVs. 

Upcharch et al. (2009) considered the capacity of charging stations in the flow refueling location 

model (FRLM) in order to maximize the vehicle-miles travelled. In this case, optimal solutions in 

FRLM might become suboptimal solutions. To deal with computational burden of generating 

combinations of locations capable of serving the round trip on each route, Capar et al. (2012) 

developed a mixed-binary-integer optimization model. They showed that large-scale cases of their 

proposed model can be solved within short period of time. Capar et al. (2013) presented a more 
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computationally efficient model for flow-refueling location model to provide insights for 

managerial concerns such as OD demand forecasting uncertainty, robustness of optimal locations 

in regard to vehicle driving ranges. Zhang et al. (2013) investigated the relationship between EV 

charging infrastructure requirements, plug-in EV operating cost and battery EV feasibility. They 

concluded that all charging infrastructures reduce operating cost of plug-in EV and sufficient 

public charging infrastructure is needed to satisfy battery EVs. Wang et al. (2013) proposed a 

mixed-integer programming method to model capacitated multiple-recharging-station-location 

problem considering budget constraint and vehicle routing behavior, and using the concepts of set 

coverage and maximum coverage. 

 
Baouche et al. (2014) a proposed mathematical model to minimize total cost, consisting of travel 

cost from demand zones to charging locations and investment cost, and find the optimal locations 

of charging stations for EVs in an urban area considering p-dispersion constraint. Dong et al. 

(2014) applied a genetic algorithm to find the optimal locations of charging stations for EVs 

considering the daily travel activity and charging behavior constraints. Their study showed that 

installing public charging stations will significantly increase EV adoption. Ahn et al. (2015) 

proposed a model to estimate the required density of charging stations for EVs for urban areas. 

They selected a city in South Korea to perform their analysis and determine the optimal density 

of charging stations. Cavadas et al. (2015) proposed a mixed-integer programming model to locate 

slow-charging stations for EVs in an urban environment considering the possibility that there 

might be several stops by each driver during the day and he only charge his vehicle at one of these 

locations. Since there may not be enough budgets to build a sufficient number of charging stations 

or since the adoption rate of EVs might be low, Chung et al. (2015) proposed a multi-period 

optimization method, a forward-myopic method, and a backward-myopic method to plan for 

optimal locations of charging stations. Since tour-based network equilibrium model can precisely 

track the state of charge of the battery and also consider the dwell time at each destination, He et 

al. (2015) proposed such a model to optimally locate public charging stations for EVs considering 

recharging behavior of drivers. Hosseini et al. (2015) proposed a two-stage stochastic program to 

locate permanent and portable charging stations with and without considering stations capacities 

to maximize the served traffic flows. Huang et al. (2015) developed an integer programming 

formulation to minimize the lifetime cost of equipment, installations, and operations of charging 

stations for plug-in EVs at workplaces by considering different charging levels and demographics 

of employees. In order to maximize the amount of vehicle-miles-travelled for an electrified 

vehicle, Shahraki et al. (2015) proposed a mathematical model to select the optimal locations for 
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public charging stations considering vehicle travel patterns. They applied their model on taxis data 

over a three week period of time in Beijing, China. Viswanathan et al. (2016) took a computational 

science approach to determine the optimal locations for charging stations of EVs. In their study, 

they have considered existing traffic and driving behavior of EV drivers. 

 

Network Design for Electrified Vehicles 
 
Widespread adoption of EVs along with introduction of new EV models capable of traveling 

longer distances will result in a need for building community-aware network of charging stations. 

As the EV usage for daily commute increases, the consideration for the ability to recharge these 

vehicles away from base locations (i.e., residential locations) will become even more important. 

While significant portion of the EV users will have sufficient battery state of charge (SOC) to 

complete their commuting trip, there will be EV users that would need intermediate recharging at 

their destination locations (e.g., workplace). 
 
Our Phase 1 research aims at developing and demonstrating (at the proof-of-concept level) a 

system for the design and deployment of the charging infrastructure in support of the increasing 

adoption of EVs to improve livability (reduced congestion, noise, improve walkability) in urban 

areas, help ease users range anxiety, reduce user costs (e.g., walking), and reduce infrastructure 

cost. Our goal is to develop analytical data-driven tools and demonstrate that strategically planned 

and incentivized deployment of charging stations in urban areas would lead to improved livability 

of these areas, and these benefits will continue to increase with increased adoption of the EVs. 
 
In this research, we develop a stochastic programming model to determine optimal infrastructure 

of charging stations for a community. There are many uncertainties such as state of charge (SOC) 

at the time of arrival to a location, parking duration based on type of the activity, driver's 

preference in terms of charging away from home and distance to walk from charging station to 

final destination that have to be considered in determining the locations of charging stations. The 

presence of all these uncertainties makes deterministic optimization irrelevant. So, different 

scenarios for uncertain parameters are generated and a stochastic optimization model is developed 

to account for these uncertainties in order to locate the optimal places for installing EV charging 

stations that have high potential of utilization and encourage people to walk more in the 

community since accessibility to charging infrastructure for EVs is being considered a 

fundamental component of community livability. 
 

Since EVs must be parked for several hours to be recharged, we consider some parking lots, public 

parking facilities as well as parking spaces at workplaces, shopping malls and so on, as possible 
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locations for installing charging stations based on urban plans. To determine the exact final 

destination of each EV driver, we randomly assign each driver to a final destination location (to 

compute final walking distance) based on a uniform probability distribution. 
 
We assume that each charging station has multiple outlets so that multiple drivers can charge their 

vehicles using the same charging station at the same time. This will help more demand to be met 

than the case where only one station is installed in every location. We assume that all charging 

point terminal types are semi-rapid charging ones (level 2 of charging power) that are typically 

recommended for private and public parking lots and shopping malls, and provide 10 to 20 miles 

range per hour of charging. Further research is needed to find the best mix of charging levels for 

any region. The required EV charging infrastructure depends on many factors such as EV market 

penetration, government support and charging behavior of EV drivers (Global EV Outlook, 2013). 
 

The cost of installing charging stations at each location will depend on types of charging stations, 

number of stations, parking fee and the traffic level in the area of that location. It also depends on 

the distance from the facility's electrical panel and labor costs (Idaho National Laboratory Report, 

2015). Rocky Mountain Institute has estimated that the cost of installing a level 2 charging station 

for public use is between $3,000 and $8,000 per charger in a parking garage and between $5,000 

and $14,000 at a curbside. While using fast-charging stations are not very common now but it is 

expected that there will be more demand for this charging type in the future. The cost of purchase 

and installation of such a charging station is almost between $30,000 and $80,000. The following 

table shows in detail the cost of installing these two charging type stations in public places 

(Agenbroad and Holland, 2014): 

 

Table 1: Cost of installing public level 2 charging stations. (Source: Agenbroad 
and Holland, 2014) 

 

We assume that garages and multi-level parking lots have enough capacity to accommodate all 

  Parking Garage Curbside  

Cost Category Low Estimate High Estimate Low Estimate High Estimate 

Hardware $1,500 $2,500 $1,500 $3,000 

Electrician Materials $210 $510 $150 $300 

Electrician Labor $1,240 $2,940 $800 $1,500 

Other Materials $50 $100 $50 $150 

Other Labor $250 $750 $2,500 $7,500 

Mobilization $250 $500 $250 $500 

Permitting $50 $200 $50 $200 

Total $3,550 $7,500 $5,300 $13,150 
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vehicles and all drivers park their cars in these places since it is difficult to track walking distances 

to final destinations in case on-street parking is also considered. According to the literature, factors 

such as walking distance from parking lot to final destination, type of parking facility (e.g., 

underground parking, multilayer parking, curb parking, and off-road parking), parking fee, 

available parking spaces, trip purpose, search time, parking duration and access time to the parking 

place can significantly affect driver's decision to choose a parking place. However like Ji et al. 

(2007), we only consider walking distance to final destination the contributing factor in choosing 

a parking lot. In this study, we made the assumption that other factors such as safety, pedestrian 

facilities and enjoyable elements are in good shape and will not discourage people to walk from 

parking lots to their final destinations. 
 

In order to make a balance between the utilization levels of charging service locations and alleviate 

congestion in certain points of the community, we need to put more charging stations in areas that 

have low normal congestion regardless of the number of EVs expected to frequent the 

neighborhood. We can also put a bound on the traffic that can be attracted to every charging 

location in certain time intervals. Traffic calming will reduce crashes, air and noise pollution and 

make the community safer and more livable. It is expected that demand for public charging 

stations has a peak load in the morning so the model has to consider charging time management 

to make a balance in electricity load on the grid. This can also be controlled through dynamic 

pricing of charging service at different time intervals during each day. In the next section, the 

sources of the uncertainties are described in detail and next, the model formulation and the solution 

approach are specified. 
 

Parameters and Uncertainties 
 
To simulate the behavior of EV drivers, we use the analysis of two surveys that were done few 

years ago: the 2009 National Household Travel Survey that was conducted by American Federal 

Highway Administration through phone surveys from more than 150 thousand U.S. households 

and the 2008-2012 American Community Survey that is a statistical survey and is done by the 

U.S. Census Bureau. 
 
The first step in developing a network of charging stations is estimating demand for vehicle 

charging during a weekday or weekend. Like facility location models, we assume that demand 

occurs at fixed points on a network. This demand will be attracted to different charging station 

locations based on their distance preference for walking toward their final destination. Different 

scenarios represent various levels of EV state of charge at the time of arrival, duration of the 

activity, time of the week, preference of drivers for charging at public stations, and willingness to 

walk due to demographic, urban level and seasonality factors. 
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The following uncertainties can affect demand for public charging stations. 
 

State of Charge 
 
While demand for EVs is increasing due to environment and economy related concerns, these 

vehicles have a limited capacity battery to charge and use. Many factors such as commuting 

distance, driver's behavior, traffic congestion and weather condition can affect the state of charge 

of an EV when it arrives at a final destination. We expect that lower state of charge be associated 

with higher chance of recharging the EV while it is parked. Analysis of two year U.S. data from 

January 2011 to December 2013 of charging events that occurred away from home show that 

Nissan Leaf drivers prefer to charge their vehicles before their state of charge drops to lower levels 

while Chevrolet Volt drivers tend to start recharging when there is a little charge in the battery 

since their vehicles rely on both an electric motor and an internal combustion engine (Brooker and 

Qin, 2015). Figure 1 compares the probability of recharging as a function state of charge at the 

beginning of recharging for Nissan Leaf and Chevrolet Volt. 

 

 
 

Figure 2: Recharging probability as a function of state of charge at the time of arrival  

(Source: Brooker and Qin, 2015). 

As given in (MengTing et al., 2011; Luo et al., 2013; Fan et al., 2015) we assume that the initial 

state of charge distribution follows a normal distribution and it is set to be N(0.3; 0.1) in which 

the mean is 0.3 and standard variation is 0.1. 

 

Dwell Time 
 
To locate charging stations for EVs, we need to know how long each driver wants to park his car 

and that depends on the type of activity that any driver wants to do during his stay. The longer a 
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person wants to stay at her destination, the higher the chance that she tends to recharge her vehicle. 

We use six different destination categories that Brooker et al. (2015) defined based on NHTS data: 

Work, Social, Family, Meal, Study, and Shopping. Figure 2 shows how much time on average 

people tend to park their vehicles based on their trip purpose (Krumm, 2012). 

 
Figure 3: Average dwell time as a function of activity (Source: Brooker and Qin, 2015). 

 
 
Zhong et al. (2008) concluded that Weibull, log-normal and log-logistic distributions are the best 

fitted distributions for modeling duration of activities on weekdays and weekends. While their 

analysis shows that model type and parameters or both might be different for an activity on 

weekdays versus weekends, they found Weibull distribution as the most applicable one among the 

three distributions. In addition, they found that certain activities such as social activities and 

shopping tend to last longer during weekend. So, we use Weibull distribution to estimate parking 

duration of EV drivers considering average staying time as in figure 2 for different activities. We 

also differentiated the duration of some activities like family outings, meal, school, shopping, 

social, and work in weekdays and weekends as described in next section. 
 

Weekday vs. Weekend 
 
People tend to attend social events, visit their families and go to shopping centers more during 

weekends than weekdays, in which demand mostly consists of people who are traveling for work 

or school so it is expected that a different demand pattern occurs for charging stations in different 

days of the week. Figure 3 confirms that demand for charging stations is dependent on time and 

type of day. 

 
During weekdays, maximum demand (load) occurs during morning time when people are arriving 

at work or school but maximum demand usually happens around noon during weekends when 

people are going to shopping malls and social places. We use Weibull distribution for the arrival 
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time EVs to parking lots during weekdays and weekends based on the studies by Pashajavid et al. 

(2012) and Guner et al. (2015). 

 

 

 
Figure 4: The expected breakdown of vehicle arrival percentages for weekdays (left) and weekends (right) (Sources: 

Brooker and Qin, 2015; and Krumm, 2012). 

 

Preference for Charging Away from Home 
 
Analysis of data collected by Idaho National Laboratory in 2012 and 2013 from over 4,000 Leafs 

and 1,800 Volts across the U.S. shows that drivers of Leaf prefer to charge away from home only 

16% of the time and drivers of Volt prefer to do that in only 13% of the time. The data also shows 

that 13% of Leaf drivers and 5% of Volt drivers only charge their vehicles at home (Idaho National 

Laboratory Report, 2015). So vast majority of people intend to use publicly accessible charging 

stations. 

Although the following table shows that many people that drive more daily miles tend to charge 

their vehicles in places other than their homes, the effect of daily miles travelled on the chance of 

charging away from home is small (Idaho National Laboratory Report, 2015): 
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Table 2: Travel daily mile and away-from-home charging behavior  
(Source: Idaho National Laboratory, 2015). 

 
 

EV Market Penetration 
 
There are many social, environmental and economic factors that can significantly contribute to 

the increasing market share of different types of EVs. According to the U.S. Department of 

Energy, although the market share of batter EVs (BEVs) and plug-in hybrid EVs (PHEVs) are 

relatively high in some states, EVs are not very common in many states. Vergis et al. (2015) 

showed that the presence of charging infrastructure will contribute to the adoption of battery EVs 

but does not have any significant effect on the adoption of plug-in hybrid EVs. The following 

figures from the U.S. Department of Energy 2015 reports clearly show that BEVs and PHEVs 

have different market share across the states between 2010 and 2014. 

 

 
Figure 5: Cumulative 2010-2014 BEV market share (left) and PHEV market share (right) across the U.S. (Source: Vergis et 

al., 2015). 

 
According to Turrentine et al. (2015), plug-in EV sales account for 0.6% of the 2015 U.S. market 

share. They believe that transition to EVs will take place like the market transition of hybrid cars 

and expected 3-5% of the market between 2015 and 2020, and 6-15% of the market between 2020 

Tendency to charge away from home Never Sometimes Frequently 
Most of the 

time 

Leaf average daily driving distance (mi) 25 31 43 32 

Volt average daily driving distance in 

EV mode (mi) 
25 29 40 26 
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and 2025 will belong to electric cars. However, 2011 Energy Outlook report of the U.S. 

Department of Energy estimated the market share of EVs is less than 1% in 2035 while it projected 

that EV annual sales will be around 13,800 cars at that time. 
 
Carley et al. (2013) surveyed adult drivers in large U.S. cities in fall 2011 in order to find factors 

that can affect their interest of buying a plug-in electric vehicle. Besides demographic variables 

that can strongly predict intent of purchase, their results show that the presence of a charging 

station inside the community is the only awareness variable that has a significant effect on intent 

of purchase. From policy point of view, one effective way to increase EV adoption is to build 

more charging infrastructure. Using multiple linear regression, Sierzchula et al. (2014) examined 

the effect of consumer financial incentives and several socio-economic factors on national EV 

market shares of 30 countries for the year 2012. While their descriptive analysis shows that neither 

financial incentives nor charging infrastructure contributes to adoption of EVs, statistical analysis 

confirms that installing one charging station (per 100,000 residents) could have twice the impact 

on a country's rate of new EV sales compared to$1,000 in financial incentives. 
 
In fact, there is a chicken-and-egg problem between charging stations and EVs. Drivers want to 

make sure that there are enough charging stations before they buy any electric car and EV installers 

want to be sure that there is enough demand in the market for EVs before they start installing 

charging stations. Increasing charging infrastructure will help drivers not to get out of charge 

during daily travel. 

 

Willingness to Walk 
 

The willingness to walk of car drivers can be affected by their socio-demographic characteristics 

such as age, gender, education level, and occupation. Walking distances are shorter for children 

and elderly than young and middle-age groups. Past studies also show that walking preferences 

are correlated with many urban design factors such as street connectivity, pedestrian infrastructure 

and mixed land uses (Forsyth et al. 2008). 

 

Fotheringham et al. (1989) proposed the unconstrained gravity model to predict the interactions 

between different urban zones. 
 

 𝑇𝑖,𝑗 = 𝐾 × 𝑣𝑖
𝜇

 ×  𝑤𝑗
𝛼 × 𝑐𝑖,𝑗

𝛽
 (1) 

 

In this model, 𝑇𝑖,𝑗is the number of trips between zones 𝑖 and j, 𝑣𝑖 and 𝑤𝑗are the intensity of origin 

and destination zones, and 𝑐𝑖,𝑗is the distance decay function component of the gravity model. This 
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function shows how an activity depends on the travel distance. For example, we expect that more 

people are willing to walk shorter distances than longer ones. By assuming that origins and 

destinations are known in the gravity model, this model reduces to the distance decay function 

part. 

 

Many researchers have used distance decay function that shows the willingness to walk or bike a 

distance toward different types of destinations. The parameter of this decay function depends on 

the type of the final destination. Research using distance decay function has revealed different 

behaviors for people that live in different areas. For example, Icacano et al. (2008) found that 

people who live in Minnesota tend to walk and bike more for leisure and recreation purposes while 

Larsen et al. (2010) found that people would walk and bike longer distances for work than for 

other purposes in Montreal. 
 
Estimation results of Yang et al. (2013) confirms that negative exponential distribution can better 

describe walking trips over short distances than distributions such as Gaussian. They specify the 

distance decay function as 

 
 

𝑃(𝑑) =  𝑒−𝛽×𝑑 (2) 

 
 
which shows the percentage of people that are willing to walk or longer distances. They used 2009 

NHTS data to estimate the decay parameter for different groups and trip purposes. The estimated 

distributions for walking preference for different activities are shown in Figure 5. 

 
Their analysis of the 2009 NHTS data shows that people are more willing to walk for recreation, 

social events and work activities rather than for studying, shopping, eating meal or dog-walking. 

Men also tend to walk farther than women but the difference is not significant. Adults between 

age 18 and 64 represent the highest rate of walking among age groups while old people and 

children tend to walk shorter distances. 

 
There are many natural and built environment factors that can affect walking rates of people. The 

presence of hills and steep grades can influence walking negatively. Seasonal variations in weather 

such as hot summers and cold winters can prevent people to walk. Built environment 

characteristics such as mixed land use, urban design, neighborhood safety, city size, and 

community type can also make walking more attractive (Kuzmyak et al. 2012). Data show that 

the more compact the mixed land use is, the higher the chance that people tend to walk toward 

their final destinations. For example, American Community Survey displays that people living in 

cities walk more to work than in suburbs and outside metro areas. 
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In our study, we consider the effects of activity type, season, community size and U.S. region on 

the walking preference of people. Table 3 shows the variation for each of these factors based on 

walking distance preferences. Yang et al. (2013) estimated parameters for these distributions 

using2009 NHTS data. 

 

The following estimations are also provided by Yang et al. (2013) using 2009 NHTS data for the 

walking distance preference of people in different regions, seasons and community size: 

 
 

Figure 6: Distance decay function for walking trips to different destination types (Source: Yang et al., 2013). 

 

Table 3: Estimated parameter for distance decay function for different factors and their categories 
(Source: Yang et al., 2013). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Factor Category 𝛽 

Season 

Winter (Dec-Feb) 

Spring (Mar-May) 

Summer (Jun-Aug) 

Autumn (Sep-Nov) 

1.88 

1.68 

1.64 

1.7 

Region 

Northeast 

Midwest 

South 

West 

1.85 

1.65 

1.76 

1.65 

Community 

Town and country 

Suburban 

Urban and second city 

1.65 

1.63 

1.78 
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Two –Stage Stochastic Model Formulation 
 
The following notations are used for the two-stage stochastic programming model: 

 Sets  
 

- 𝑃: Set of parking lots.  

- 𝑆: Set of potential locations for charging stations.  

- 𝐿: Set of number of charging stations in each location.  

- Γ: Set of arrival times and departure times.  

- 𝑇: Set of times. 

- 𝑊: Set of scenarios.  
 

 Fixed Model Parameters  
 

- 𝑝: Maximum number of locations that charging stations can be installed in.  
 

 Scenario Dependent Parameters  
 

- 𝑑𝛾(𝑡),𝑝,𝑠(𝑤): Demand with arrival and departure time set of 𝛾(𝑡) that is attracted from 

parking lot p to charging location s in scenario w.  
 

- 𝑑𝑢𝑠,𝑠′(𝑤): Demand that can choose both locations 𝑠 and 𝑠′for recharging in scenario 𝑤.  
 

 First Stage Decision Variables  
 

- 𝑥𝑠: 1 if location 𝑠 is considered for installing charging stations.  

- 𝑧𝑙,𝑠: 1 if 𝑙 charging stations are installed in location 𝑠.  
 
 Second Stage Decision Variables  

 
- 𝑦𝛾(𝑡),𝑝,𝑠(𝑤): Captured demand with arrival and departure time set of 𝛾(𝑡) that is at-

tracted from parking lot 𝑝 to charging location 𝑠 in scenario 𝑤.  
  
𝑐𝑠,𝑠′(𝑤): 1 if both location 𝑠 and 𝑠′ are chosen for installing charging stations 

 

The two-stage stochastic optimization model is presented as follows: 

 

First-Stage Model:  

                                             

𝑀𝑎𝑥 𝑓(𝑥, 𝑧) = 𝐸[𝜑(𝑥, 𝑧, 𝑤)] (3) 

s.t  

∑ 𝑥𝑠 = 𝑝
𝑠∈𝑆

 
(4) 



 Community-Aware Charging Station Network Design for Electrified Vehicles 

 

 24 
 

𝑧𝑙,𝑠 ≤ 𝑥𝑠         𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆 
(5) 

∑ 𝑧𝑙,𝑠 ≤ 1
𝑙∈𝐿,𝑠∈𝑆

 
(6) 

𝑥𝑠, 𝑧𝑙,𝑠 ∈ {0,1},           𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆 (7) 

 
 

Second-Stage Model: 

 

     𝜑(𝑥, 𝑤) = 𝑀𝑎𝑥 ∑  𝑦𝛾(𝑡),𝑝,𝑠(𝑤) − ∑  𝑐𝑠,𝑠′(𝑤) × 𝑑𝑢𝑠,𝑠′(𝑤)𝑠∈𝑆,𝑠′∈𝑆𝛾(𝑡)∈Γ,𝑝∈𝑃,𝑠∈𝑆  (8) 

                             ∑ 𝑦𝛾(𝑡),𝑝,𝑠(𝑤) ≤ ∑ 𝑧𝑙,𝑠𝑙∈𝐿𝛾(𝑡)∈Γ,𝑝∈𝑃                   𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇                          
(9) 

                            𝑦𝛾(𝑡),𝑝,𝑠(𝑤) ≤ 𝑑𝛾(𝑡),𝑝,𝑠(𝑤)             𝛾(𝑡) ∈  Γ, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 
(10) 

𝑐𝑠,𝑠′(𝑤) ≤ 𝑥𝑠                  𝑠, 𝑠′ ∈ 𝑆                                         
(11) 

𝑐𝑠,𝑠′(𝑤) ≤ 𝑥𝑠
′                   𝑠, 𝑠′ ∈ 𝑆 (12) 

  

𝑐𝑠,𝑠′(𝑤) ≥ 𝑥𝑠 +  𝑥𝑠
′ − 1                𝑠, 𝑠′ ∈ 𝑆 (13) 

  

   𝑐𝑠,𝑠′(𝑤) ∈ {0,1},   𝑦𝛾(𝑡),𝑝,𝑠(𝑤) ≥ 0, 𝛾(𝑡) ∈ Γ, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊 (14) 

In this model, first-stage decisions are made on the locations of charging stations and subsequently, 

the decisions are exposed to uncertainties in the second-stage. In the second-stage, recourse 

decisions are made to maximize the potential traffic flows based on the locations chosen in the 

first-stage. Constraint 4 refers to the maximum number of locations that can be chosen for 

installing charging stations in the community. Constraints 5 and 6 determine the number of 

charging stations in any location that is selected for installing charging stations. Constraint 9 

ensures that there is enough capacity to satisfy attracted demand to each station. Constraint 10 

states that attracted demand cannot exceed the total possible demand at each time and station. 

Constraints (11) – (13) negate the sum of utilization of two individual charging stations when are 

located too close to each other. This represents cannibalization effect on demand when two 

charging stations are located too close. 
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Modeling Uncertainty – Sample Average Approximation 
 
According to Santoso et al. (2005), a major difficulty in solving two-stage stochastic optimization 

problems is that we need to solve a huge number of linear optimization problems, one for each 

scenario, which makes the problem computationally intractable. We use sample average 

approximation (SAA) method to generate appropriate number of scenarios (within a prescribed 

confidence interval) to represent uncertainty for the two-stage stochastic programming model. 

Although our objective function is maximization, the following section represents a standard 

minimization problem. 
 
The standard sample average approximation method is described as follows: 

 

1. Estimating a lower bound for the optimal solution:  
 

 Generate M independent sample sets of scenarios each of size 𝑁, i.e., (𝑤𝑗
1, 𝑤𝑗

2, . . . , 𝑤𝑗
𝑁 ) for 

𝑗 = 1,2, … , 𝑀 

 

 For each sample set 𝑚, find the optimal solution:  
 

𝑣𝑁
𝑗

=
1

𝑁
× ∑ 𝜑(𝑥, 𝑧, 𝑤𝑗

𝑖

𝑁

𝑖=1

) (15) 

 

                                                

 Compute the followings: 

�̅�𝑁,𝑀 =
1

𝑀
× ∑ 𝑣𝑁

𝑗𝑀
𝑗=1                                                            (17) 

 

𝜎�̅�𝑁,𝑀 
2 =

1

𝑀×(𝑀−1)
× ∑ (𝑣𝑁

𝑗
− �̅�𝑁,𝑀

𝑀
𝑗=1 ) 2                                            (18) 

 

According to Norkin et al. (1998) and Mark et al. (1999) , the expected value of 𝑣𝑁 is less than or 

equal to the optimal value 𝑣∗  . Since the sample average �̅�𝑁,𝑀  is an unbiased estimation of 

expected value of 𝑣𝑁 , the 𝐸[�̅�𝑁,𝑀] is less than or equal to the optimal value 𝑣∗. So, �̅�𝑁,𝑀 provides 

a lower statistical bound for the optimal solution. 

2. Estimating an upper bound for the optimal solution: 

 If (�̅�, 𝑧̅) is a feasible solution for the first stage problem, we expect that 𝑓(�̅�, 𝑧̅) ≥ 𝑣∗. So, 

choosing any feasible solution of the first stage problem will provide an upper statistical 

bound for the optimal value.  
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 Choose a sample of size 𝑁′  of scenarios, much larger than 𝑁 , i.e., ( 𝑤1, 𝑤2, … , 𝑤𝑁′
) 

independent of samples to find the lower limit and estimate the objective function:  

 

                 

𝑓(�̅�, 𝑧̅) =
1

𝑁′
× ∑ 𝜑(𝑥, 𝑧, 𝑤𝑖)

𝑁′

𝑖=1

 (19) 

                        

 

 

𝑓(�̅�, 𝑧̅) =
1

𝑁′
× ∑ 𝜑(𝑥, 𝑧, 𝑤𝑖)

𝑁′

𝑖=1

 (19) 

 Compute the variance for this estimation: 

𝑓(�̅�, 𝑧̅) =
1

𝑁′
× ∑ 𝜑(𝑥, 𝑧, 𝑤𝑖)

𝑁′

𝑖=1

 (19) 

                 
 

3. Finding an estimation of the optimality gap:  
 
 Use the upper bound and the lower bound that are computed in previous steps to find an 

estimation for the optimality gap:  

 

𝑔𝑎𝑝𝑀,𝑁,𝑁′(�̅�, 𝑧̅) = 𝑓(�̅�, 𝑧̅) − �̅�𝑁,𝑀 (20) 

  

4. Checking the quality of the estimated optimality gap:  
 

 an estimation for the variance of this estimated optimality gap can be found by 

 

    𝜎𝑔
2𝑎𝑝 = 𝜎𝑣𝑁,𝑀

2 + 𝜎𝑁′
2 (�̅�, 𝑧̅) (21) 

  

 

Case Study 
To show the efficiency of the two-stage model, we have started conducting a variety of 

experiments using actual data obtained through SEMCOG for the Midtown area of Wayne State 

University in Detroit, MI. However, we are not yet done with these experiments. In the interim, 

we report here results from synthetic networks. In particular, we report here results from a small 
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test network and a larger network. The large network consists of 500 nodes as final destinations 

and 50 parking lots that drivers are already parking their vehicles. From these 50 parking lots, 10 

are considered as potential locations for charging stations. In the small network case, 100 nodes 

are considered as final destinations. There are also 10 parking lots that drivers are already parking 

their vehicles from which 5 are considered as potential locations for charging stations. In addition, 

we assumed that we can install at most 2 packs of chargers with 4 outlets in small network and 2 

packs of chargers with 10 outlets in large network in every possible location. 

 
The following tables show the result of running the SAA for the small network problem in order 

to find the sufficient number of scenarios to get the optimal solution. This network is shown in 

figure 6. In these tables, average is the lower bound for the optimal solution, standard deviation is 

the standard deviation for this lower bound, gap is the difference between upper bound and lower 

bound for the optimal solution and sigma is the standard deviation for this gap. 

 
Table 4: SAA result for case   = 1 and (M,𝑁′) = (20,1000). 

 
N Average St. Dev. gap sigma 
20 10.11 0.14 0.08 0.179 
40 10.53 0.09 0.34 0.142 
50 10.31 0.14 0.12 0.178 

 
 

Table 5: SAA result for case   = 2 and (M, 𝑁′ ′) = (20,1000). 
 

N Average St. Dev. gap sigma 
20 20.7 0.25 0.09 0.335 
40 21.03 0.24 0.42 0.328 
50 21.03 0.22 0.42 0.314 

 

Table 6: SAA result for case   = 3 and (M,𝑁′) = (20,1000). 

 

 

 

 

Table 7: SAA result for case   = 4 and (M,𝑁′) = (20, 1000). 
 
 
 
 
 

 

N Average St. Dev. gap sigma 
20 30.71 0.52 0.31 0.606 
40 30.84 0.3 0.44 0.432 
50 31.12 0.29 0.72 0.426 

 Average St. Dev. gap Sigma 
20 39.84 0.51 0.71 0.664 
40 39.8 0.48 0.67 0.641 
50 40.81 0.39 1.68 0.577 
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Figure 7: The small network used in our analysis. Blue dots are the optimal locations of charging stations for cases of p = 2 (left) 

and p = 3 (right) when market shares 1% for BEV and 2% for PHEV. 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 8: The larger network used in our analysis. Blue dots are the optimal locations of charging stations for cases of p = 1 

(left) and p = 2 (right) when market share is 2% for BEV and 5% for PHEV. 

The preliminary results of finding optimal locations for installing charging stations for small and 

large networks using Sample Average Approximation method are presented in figures 6 and 7, 

respectively. The smaller circle dots are showing the demand nodes and square dots are 

representing possible locations for installing charging stations. The optimal locations are shown in 

blue color. In these cases, we assume that total number of cars arriving to the community follows 

a uniform distribution between 2,000 and 4,000 per day in small network, and between 4,000 and 

6,000 per day in large network. 

 
Average of accessibility to charging stations and average of walking distances are computed for 

different scenarios of BEV and PHEV market shares in tables 8 and 9. Negative values for walking 
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imply that people are willing to walk less if we can install charging stations at the optimal locations. 
 
Average of accessibility to charging stations and average of walking distances are computed for 

different scenarios of BEV market share and PHEV market share and reported in Tables 8 and 9. 

Livability Assessment 
 
Developing a set of indicators is helpful in measuring the performance of transportation strategies 

that are designed to improve livability of the community. An important principle of livability 

analysis is increasing the transportation options for people so that they can meet at least a part of 

their travel needs through walking and biking. One example of performance measures is the 

percentage of trips that have been done through walking. 

 

Table 8: Access to charging stations and walking distances in small network. 

 
 
 

 

 

 

 

 
Table 9: Access to charging stations and walking distances in large network. 

 

 

  

 

 

Some economists have measured in detail the benefits of walking and cycling. Litman (2009) 

estimated the external costs of walking and compared them to the ones of driving cars in average 

and peak urban conditions. He found that walking can save $0.25 per vehicle-mile and $0.50 per 

vehicle-mile travelled in average urban condition and urban-peak condition, respectively. The 

following table summarizes the monetized benefits of reduced motor vehicle travel per 

mile(Litman, 2016): 

 

  

  Market Share: Market Share: 

  (BEV 1%, PHEV 2%) (BEV 0.05%, PHEV 0.4%) 

 Number of Access Walking Access Walking 

 Chargers  distance  distance 

𝑝 =  1 8 1% 16.99 1% -14.74 

𝑝 =  2 12 1% 17.29 1% -5.6 

  Market Share: Market Share: 
  (BEV 1%, PHEV 2%) (BEV 2%, PHEV 5%) 

 Number of Access Walking distance Access Walking distance 

 Chargers     

𝑝 = 1 10 1% -34.73 1% -54.71 

𝑝 = 2 20 1% -38.83 1% -55.51 
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Table 10: Economic value of benefits of reduced motor vehicle travel per mile. (Source: Litman, 
2016) 

 

Impact Urbane peak Urban Off-Peak Rural Average 
 

Congestion $0.2 $0.05 $0.01 $0.06  

Restriction  

    
 

Reduced Barrier $0.1 $0.01 $0.01 $0.01 
 

Energy Conservation $0.03 $0.03 $0.03 $0.03 
 

Pollution Reduction $0.1 $0.05 $0.01 $0.044 
 

 

The AARP Public Policy Institute has developed an index to measure livability in neighborhood 

level around the U.S. by focusing on old people since successful places to live usually are designed 

for elderly people. The institute surveyed 4,500 Americans of age 50 and above to come up with 

the following categories that determine a community's strengths and weaknesses (FHA 2011): 
 
 Housing affordability as measured by housing cost burdens and the availability of subsidized 

housing  
 
 Neighborhood quality as measured by safety metrics and vacancy rates, as well as proximity 

to grocery stores, parks, libraries jobs, and so on  
 
 Alternative transportation options that connect people to social activities, economic 

opportunities and health care  
 
 Environmental conditions, including air and water quality, as well as resiliency plans that 

incorporate disaster recovery and energy efficiency  
 
 Health access, as measured by access to exercise options, health care availability, access to 

healthy food  
 
 Civic engagement, including residents' ability to reduce social isolation through community 

engagement, measured by voting rates, number of cultural/arts institutions and organizations 

and access to the internet  
 
 Employment opportunities  

 

 

In this index, communities are compared against each other and get a score between 0 and 100 in 

each category. The average city gets 50 in each category and best places get 100. By studying the 

problem of finding the optimal locations for charging stations of EVs from sustainability point of 

view, Guo et al. (2015) developed and index system consisting of environmental, economic and 

social criteria to evaluate the performance of siting the optimal locations for EV charging 

infrastructure. Using research articles and feasibility reports of installing charging stations for EVs 

and judgment of the experts in the various fields such as environment, economy, society, electric 
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power system and transportation system, they came up with the following sub-criteria for selecting 

the optimal locations for charging stations: 

 

Traffic Reduction 
 
One way to improve neighborhood livability and encouraging people to walk is traffic calming 

and traffic reduction. While we want to attract drivers to charging stations that are within their 

walking preference distance, we want to avoid traffic increase in some locations during the peak 

time and divert them to other locations that have more unused parking spaces and less traffic flow. 

Grant-Muller and Laird (2007) and Litman (2009) estimated that traffic congestion of a motor 

vehicle on other road users costs $0.10 to $0.35 per mile during urban-peak hours. The traffic 

reduction can have the greatest effect on areas that schools and recreational centers exist. 

According to Litman (2009), per capita travel time and per capita congestion delay measure total 

congestion impact better than Level-of-Service (LOS) and Travel Time Index (TTI) since they 

consider shift in travel mode or change of destination. 

 

Table 11: Criteria and sub-criteria for community livability analysis (Source: Guo et al.2015). 

 

Criteria Sub-criteria 
 Destruction degree on vegetation and water Waste discharge 

Environment GHG emission reduction 
 Fine particulate matter emission reduction 
 Construction cost 

Economy Annual operation and maintenance cost 
 Investment pay-back period 

 Harmonization with the development planning of urban road 

 network and power grid 
Society Traffic convenience 

 Service capability 
 Impact on people’s lives 
  

 

Emissions Reduction 
 

Walking almost produces no pollution. According to the Pedestrian Bicycle Information Center, a 

research in Washington indicates that a 5 percent increase in walkability results in 5.6 percent 

fewer grams of nitrogen and 5.5 percent fewer grams of volatile organic compounds being emitted 

by vehicle travel. On the other hand, the level of emission from EVs depends on the type of power 

plants that are used to generate the required electricity for charging. Litman (2016) estimated that 
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the cost of pollution produced from driving automobiles is approximately 10 per mile for urban-

peak, 5 for urban o -peak and 1 for rural areas. 

 

Public Health Benefits 
 

Many studies in the literature have shown that there is a positive relationship between physical 

activity and public health condition. According to WHO reports, physical inactivity contributes to 

30% of ischaemic heart disease, 21-25% of breast and colon cancers, and 27% of diabetes 

incidents. The Centers for Disease Control and Prevention has initiated a Healthy People 2020 

program that emphasizes on the increase of walking and cycling. The design of charging 

infrastructure can provide opportunities for people in a community to increase their level of 

physical activity. The New Zealand Transport Agency estimates that walking has a value of $3.7 

2008 USD per mile for improving health and reducing congestion. The following table shows the 

monetized values of health benefits of walking provided by Land Transport New Zealand. These 

values are the combination of the benefits that each person can get from walking and the benefits 

that society can get (Litman, 2014). 

 

Table 12: Economic value of public health benefits from walking (Source: Litman 2014). 

 

Walking level Internal External 2007 U.S. Dollars 
 

Benefit ($) Benefit ($) per mile  

 
 

     

Low 0.12 0.12 0.24 
 

Medium 0.24 0.24 0.48 
 

High 0.48 0.48 0.96 
 

 

Conclusions 
 
In this project, we studied and presented a two-stage stochastic programming model for network 

design of EV in a given community. The developed models and the resulting tools are expected to 

be used by planning agencies in the future. In continuation of the first phase, we expect to extend 

the study in a second phase. The second phase will enhance the modelling framework in following 

ways: a) identification of accessibility range for the community for the proposed EV stations 

network and include a minimum coverage requirement, and assess the impact of uncovered regions 

within a community, b) inclusion of multi-mode of transportation for a community and incentivize 

the potential EV charging stations based on their reachability for multi-modes of transportation, 

and gauge the shift in drivers’ adoption of such EV charging stations, c) provision to quantify the 
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robustness and sensitivity of prescribed network design with respect to the changes in the arrival 

pattern, walking or adoption behavior of drivers and estimate the influence of pricing scheme on 

a network design; this will provide useful insights due to the randomness used for the model, and 

d) evaluation of the model with a pilot study for a community by partnering with a regional 

planning agency such as the SEMCOG. 

 

Results Dissemination 
 

Following are the plans for knowledge dissemination from this phase of the project: 

 

 Optimization codes are developed using R and Python languages, and Gurobi was used as 

an optimization solver. The software codes will be packaged as modules and will be shared 

with planning agency (initially with SEMCOG) so they become part of their planning kit.  
 

 The research with be presented in the upcoming conferences (INFORMS annual meeting to 

be held at Nashville in November).  
 

 The study will be integrated in undergraduate and graduate courses (Courses - Introduction 

to Operations Research (UG) and Deterministic Optimization (PG)).  
 
A manuscript has been prepared based on the current study and expected to be submitted by the 

end of summer. We are also preparing a white paper based on our case-study with SEMCOG and 

we intend to share the white-paper and possibly engage in training sessions with other national 

planning agencies. 
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